Search

Storygram: Natalie Wolchover’s “Visions of Future Physics”

A man standing with arms crossed in front of a starry background.
Béatrice de Géa. (Originally published in Quanta. Reprinted with permission from Quanta.)

 


The following story diagram—or Storygram—annotates an award-winning story to shed light on what makes some of the best science writing so outstanding. The Storygram series is a joint project of The Open Notebook and the Council for the Advancement of Science Writing. It is supported in part by a grant from the Gordon and Betty Moore FoundationThis Storygram is co-published at the CASW Showcase.


 

If Nima Arkani-Hamed was just the sharpest theoretical physicist of his generation, it would have been enough. If all he did was work on some of the most compelling scientific ideas of our time, such as extra dimensions of space and parallel universes, it would have been enough. If his only claim to fame was his dream of a new scientific instrument—so ginormous that, coming from anyone else, it would have been laughed off—it would have been enough. But he combines all this with childhood stories worthy of an action movie and an enthusiasm so unabashedly geeky that it loops back around the other side and becomes hip. He is one of the most compelling figures in science today.

Natalie Wolchover wove all these aspects of Arkani-Hamed’s life into her profile of him for Quanta magazine in September 2015, one in a set of four articles that won her last year’s Evert Clark/Seth Payne Award for young science journalists. The profile follows up her story about Arkani-Hamed and his then-student Jaroslav Trnka’s concept of the “amplituhedron,” the article that really made her name among physicists.

Like many of us who cover physics, Wolchover is a refugee from academia. She wanted to be a physicist for much of her life, but had an epiphany in graduate school, dropped out before getting her PhD, and jumped into blogging and magazine internships. She has been with Quanta, an online magazine concentrating on physics, mathematics, and biology, since its inception in the fall of 2012.

As compelling as Arkani-Hamed is, an article about him most certainly does not write itself. The sheer amount of material makes for a thousand-piece jigsaw. Though generous with his time, Arkani-Hamed is like many charismatic people in that he intersperses periods of total focus on you with long intervals when he won’t return your emails. Also, since leading journalists such as Elizabeth Kolbert and Tyler Cabot have already written about Arkani-Hamed, it is harder to justify a new profile of him. In “Visions of Future Physics,” Wolchover pulls it off. Let’s see how.

 


What Do You Want to See?

Jump to Q&A with Natalie Wolchover

Story Annotation

Visions of Future Physics
By Natalie Wolchover, Quanta
September 22, 2015
(Reprinted with permission)

 

 

Get Nima Arkani-Hamed going on the subject of the universe — not difficult — and he’ll talk for as many minutes or hours as it takesI like how the piece begins with its protagonist and his defining characteristic: infectious enthusiasm. It also breaks the mold by not offering a specific anecdote, but a kind of composite that captures its subject’s general personality. to transport you to the edge of human understanding, and then he’ll talk you past the edge, beyond Einstein, beyond space-time and quantum mechanics and all those tired tropes of 20th-century physics, to a spectacular new vision of how everything works. It will seem so simple, so lucid. He’ll remind you that, in 2015, it’s still speculative. But he’s convinced that, someday, the vision will come true.

On the strength of the torrent of ideas he has produced over the past 20 years — he won the inaugural $3 million Fundamental Physics Prize in 2012 “for original approaches to outstanding problems in particle physics, including the proposal of large extra dimensions, new theories for the Higgs boson, novel realizations of supersymmetry, theories for dark matter, and the exploration of new mathematical structures in gauge theory scattering amplitudes”A mouthful of a quote, but I think it serves Wolchover’s purpose in conveying that this is an ideas story as much as a human one. The jargon is almost a MacGuffin: You don’t need to know what these things are to get the point that we’re venturing to the frontiers.— Arkani-Hamed, 43, a professor at the Institute for Advanced Study (IAS) in Princeton, N.J., is widely considered one of the best theoretical physicists working today. Colleagues point to his knack for simplifying impossibly complex problems, as well as his exceptional mathematical ability, creativity, instincts and vast knowledge of physics. “Nima is amazing in every component of talent space,” said Savas Dimopoulos, a theoretical particle physicist at Stanford University.With all this praise, the article verges on hagiography. Here’s where the author’s (and her editor’s) knowledge of the audience is crucial. Quanta readers, I gather, like to read about heroic scientists and are uninterested in warts-and-all portrayals.

But while many top physicists shy away from stagecraft,This reference to stagecraft might have been a pejorative description, but the rest of the paragraph makes clear that Arkani-Hamed is just being himself. Arkani-Hamed functions, colleagues say, as a “messiah,” a “Pied Piper,” an “impresario.” Arms in motion and dark hair spilling to his shoulders,This elaborates on the stagecraft—it’s the irrepressible excitement of a Bohemian rather than a slick façade. he weaves together calculations, thought experiments and historical precedents into narratives, confidently outlining chapters to come. His listeners range from graduate students to Nobel Prize winners. “He keeps coming up with the goods, and his persuasiveness is hypnotic,” said Raman Sundrum, a theoretical physicist at the University of Maryland in College Park, “so a lot of people follow where he leads.”

Arkani-Hamed’s mission — simple to state, but so all-consuming that he barely sleeps — is to understand the universe. “I don’t feel I have any time to lollygag, at all,” he said this summer in Princeton. This obsession takes him in several directions, but in recent years one question about the universe has come to preoccupy him, along with the field as a whole. Particle physicists seek to know whether the properties of the universe are inevitable, predictable, “natural,” as they say, locking together into a sensible pattern,Now we’re moving into the central scientific theme, and tension, of the article. This section presumes an interest level in the reader. Just as a sports reader doesn’t need a triple play or first down to be defined, a Quanta reader needs no primer on cosmic fine-tuning or the multiverse. Nor does the story dwell on a point that some audiences might get hung up on—namely, that nature seems unnatural. or whether the universe is extremely unnatural, a peculiar permutation among countless other, more mundane possibilities, observed for no other reason than that its special conditions allow life to arise. A natural universe is, in principle, a knowable one. But if the universe is unnatural and fine-tuned for life, the lucky outcome of a cosmic roulette wheelI always like figures of speech that don’t call attention to themselves. The point is clear without having to say, “The universe is like a roulette wheel in that the laws are randomized….”, then it stands to reason that a vast and diverse “multiverse” of universes must exist beyond our reach — the lifeless products of less serendipitous spins. This multiverse renders our universe impossible to fully understand on its own terms.

As things stand, the known elementary particles, codified in a 40-year-old set of equations called the “Standard Model,” lack a sensible pattern and seem astonishingly fine-tuned for life. Arkani-Hamed and other particle physicists, guided by their belief in naturalness, have spent decades devising clever ways to fit the Standard Model into a larger, natural pattern. But time and again, ever-more-powerful particle colliders have failed to turn up proof of their proposals in the form of new particles and phenomena, increasingly pointing toward the bleak and radical prospect that naturalness is dead.

Still, many physicists, Arkani-Hamed chief among them, seek a more definitive answer. And right now, his quest to answer the naturalness question leads through China. Two years ago, he agreed to become the inaugural director of the new Center for Future High Energy Physics in Beijing. He has since visited China 18 times, campaigning for the construction of a machine of unprecedented scale: a circular particle collider up to 60 miles in circumference, or nearly four times as big around as Europe’s Large Hadron Collider (LHC). Nicknamed the “Great Collider,” and estimated to cost roughly $10 billion over 30 years, it would succeed the LHC as the new center of the physics universe. According to Arkani-Hamed and those who agree with him, this 100-trillion-electron-volt (TeV) collider would slam subatomic particles together hard enough to either find the particles that the LHC could not muster or rule them out, rescuing or killing the naturalness principle and propelling physicists toward one of two radically different pictures: that of a knowable universe, or an unknowable multiverse.

The Chinese collider campaign has the support and involvement of many prominent researchers aside from Arkani-Hamed, including Yifang Wang, the Nobel Prize winner David Gross, and the Fields medalist S.T. Yau, as well as legions of experimentalists and engineers working behind the scenes, yet the project is controversial. Experts disagree about what the machine would achieve.This controversy is the central narrative tension in the article, setting up the drama of whether Arkani-Hamed can push through a hugely ambitious and divisive project by force of will. I worry that its burial halfway down the seventh graf saps its punch. I can see why it got buried, because there was so much to set up: Arkani-Hamed, naturalness, null results from current accelerators, the Great Collider. Piecing together such a puzzle is never easy, and it is perhaps the main problem that we face in science profiles. All that said, I still think the placement throws the article off balance. Skeptics of the collider project come across as timid naysayers (few are named, let alone quoted) rather than intellectual equals with valid points, so the battle loses some of its epic quality: Arkani-Hamed just doesn’t seem to have a worthy opponent. They also wonder if China is ready to take the helm in particle physics, questioning whether its small particle physics community can grow quickly enough over the next two decades to run a project so enormous and complex, even with the help of thousands of physicists in Europe and the United States. As Tao Han, a particle physicist who supports the campaign, expressed the concerns of some of his Chinese colleagues, “Are we going to jump too far and fall hard?”Apropos of my previous point, this criticism of the project is conveyed second-hand—through a supporter of the project—leaving the critics faceless and therefore easier to dismiss. I suspect that Wolchover had trouble finding critics willing to go on record (and indeed the article hints at this below). That’s a situation I encounter a lot in theoretical physics. Physicists are very opinionated, but they can also be reluctant to air their criticism.

Now it is decision time. The Chinese government will release its five-year budgetary plan by the end of the year, revealing whether it plans to invest in research and development for the collider project.

“This 100-TeV collider program in China is brilliant; it’s challenging; it’s risky. And that’s precisely why nothing like this, I think, could really have had as much traction without Nima,” said Sundrum, who has visited Beijing to aid the campaign. “It has taken enormous persuasion for him to take this from a total fantasy, a losing fantasy, to something which has a fighting chance.”

 

A man leaning back in a desk chair with his feet up on the wooden desk; he's writing on a pad of paper.
Béatrice de Géa. (Originally published in Quanta. Reprinted with permission from Quanta.)

 

Park and Go

To Arkani-Hamed, the Chinese collider campaign feels like pushing an open door. “When you think about it more, it’s just perfect,” he said, sipping Coke Zero on his office couch. “It would be great for physics; it would be great for China.The article conveys the nationalistic impulse that makes the project possible, as well as the sense of the U.S. as a power in decline, without dwelling on it. They’re looking for something where they can just be the best in the world.” He continued, “There are very few things in life where what you want to do for idealistic reasons and what someone else wants to do for Machiavellian reasons are identical. And when that happens, you should just do it. You should just do it!”

June sunlight poured onto chalk-speckled blackboards and a magnificent antique desk. Arkani-Hamed sat beneath a framed photo of a male leopard, taken by his partner, a biologist, when he went with her on safariThis is pretty much all the article says about Arkani-Hamed’s life outside physics—just enough to indicate that he does have a life outside physics. two years ago in South Africa. Sporting his usual black T-shirt, cargo shorts and sandals, with arms covered in cat scratches — the tough love of a worshipped tabby — he leapt up to erase a patch of speckles and chalk out a new mathematical argument, and then sprang up again to hug a visiting researcher who politely peeked in from the hallway.It’s great to see this depiction of the social side of physics, which you don’t normally read about. At lunch, surrounded by protégés, he scrawled theories on napkins, defending some, explaining others, and chugged more Coke Zero. (His caffeine intake peaked several years ago at 15 to 16 espresso shots per day.)

If you’re enjoying this Storygram, also check out two resources that partly inspired this project: the Nieman Storyboard‘s Annotation Tuesday! series and Holly Stocking’s The New York Times Reader: Science & Technology.

Generous with his time, even with a young man hanging out in the hallway whom he half-jokingly described as his “stalker,” Arkani-Hamed claims never to have turned down a graduate student who wanted to work with him. Many from his flock have gone on to join the faculties of top research universities and are now leaders in their generation. “Being Nima’s student was like having Usain Bolt as a track coach,” said Clifford Cheung of the California Institute of Technology in Pasadena, who studied under Arkani-Hamed at Harvard University. Jesse Thaler of the Massachusetts Institute of Technology described spending nearly every day in Arkani-Hamed’s bustling Harvard office, in laughter-filled bull sessions and “nerve-racking caffeine-driven interrogation.” Thaler added: “If I look at the high points of my physics career thus far, many of them occurred because I (consciously or not) tried to follow Nima’s example: pursuing one’s own ideas with unbridled enthusiasm, politely disregarding naysayers and tackling obstacles head-on. And drinking espresso.”These anecdotes go beyond the usual I-remember-him-fondly quotes and fit nicely into the article’s story arc of leaping over hurdles by force of will. There’s probably also a bit of hagiography and selective remembering here, unless these are the only grad students in history not to have a fraught relationship with their adviser. I will say that this is the point in the article where female voices could have been introduced. That might have been hard elsewhere—if none of the protagonists in the collider debate are women, there’s nothing Wolchover could do about that—but Arkani-Hamed has had at least two female grad students.

Arkani-Hamed has been a disruptive force throughout his career. He started making a name for himself in graduate school, in the mid-1990s, at the University of California, Berkeley. When he pointed out a mistake in a pre-print by Dimopoulos, a prominent researcher two decades his senior, his adviser suggested that Dimopoulos might want to return from a sabbatical in Europe to work with Arkani-Hamed, who was to become a postdoctoral researcher at Stanford’s SLAC National Accelerator Laboratory. “How lame,” Dimopoulos recalled thinking. “Why would I let a postdoc decide my future?” In the end, he did return, and he and Arkani-Hamed became close friends and collaborators. “We had an extremely productive time together and a good time,” Dimopoulos said. “He is one of my very best friends in my life.”A nice insight into how personal rapport eased what might have been a fraught relationship. Perhaps more than other professions, science (and academic life in general) blurs the professional and the personal. Friendships establish trust that is essential to productive collaboration; it’s easier to test out crazy ideas on someone you can trust. Their biggest collaboration rounded out the Standard Model with the hypothetical effects of extra spatial dimensions curled up at each point in our three-dimensional reality.

As Arkani-Hamed spawned one new research area after another, he resisted real-world distractions, like parking rules.I love these details of a personality too big for this world, seeking a refuge where he can dispense with the rules that mere mortals must live by. As a young professor at Berkeley, he insisted on parking in the mostly empty lot near his building rather than the faraway space assigned to him, leading to an epic war with a parking attendant that landed his face on a “Wanted” poster and helped drive him from Berkeley to Harvard. There, his parking troubles eased somewhat (though his car was regularly towed to a nearby lot), and his career flourished. He “made the whole place come alive,” said Melissa Franklin, a Harvard physicist. When, in 2008, he left for the IAS, seeking its “purity of purpose” and freedom from teaching duties, his parking problems ended, but “we cried,” said Franklin. “We wept.”

The tranquility of the IAS, where great thinkers like Albert Einstein and Kurt Gödel finished their careers, hasn’t slowed Arkani-Hamed’s ambitions. Now, on top of a continued outpouring of new ideas, his days and nights are filled with flights and meetings in pursuit of his dream collider. Much later that June day, after dropping an intellectually exhausted reporter off at the train station, Arkani-Hamed drove to Newark to catch a working redeye flight to Hong Kong, where he would speak at a conference before boarding another flight to Beijing to meet with Chinese colleagues and guide research for the collider project. “I sleep the way lions eat,”A cute reprise of the safari. Few readers may notice it, but we writers have to give ourselves the license to be writerly. he explained — “very little for stretches of time, punctuated by huge and delicious feasts.”

 

A multiple-exposure image of a man teaching in a classroom, moving in front of a blackboard.
Nima Arkani-Hamed with collaborators Raffaele Tito D’Agnolo (seated at left) and David Pinner at the Institute for Advanced Study in Princeton, New Jersey. Béatrice de Géa. (Originally published in Quanta. Reprinted with permission from Quanta.)

 

Escape to the Stars

Arkani-Hamed’s mother, Hamideh Alasti, believes her son’s drive to understand the world once saved his life.This whole section is a great twist on the usual scientist origin story. Lots of kids love the stars; few can claim that this love saved their lives. Some writers might have led with this, but Wolchover had bigger fish to fry with the collider story. He was born in Houston, where his father, Jafar, worked for the Apollo program analyzing physical properties of the moon. (Arkani-Hamed’s mother and his sister, Sanaz “Sunny” Jensen, are also physicists.) As the family bounced between academic jobs in Iran and the U.S., young Nima absorbed books like Tell Me Why, by Arkady Leokum, and enjoyed hands-on scientific investigations like catching and raising frogs, snakes and salamanders and studying their behavior. “He really didn’t care about material life,” Alasti said. “If you wanted him to put a nicer shirt on, he didn’t want that.” His father added, “I used to take Nima hiking almost every weekend in Tehran. He was very stubborn. I remember once he hiked about 11 hours at the age of about 4. I asked him to come onto my shoulder and he refused.”

In 1979, when the Shah of Iran was overthrown, the family again returned to their homeland from the U.S., to the promise of free expression and possibility. Nima sat in on political discussions between his parents and their Western-educated friends, and recalls reading The Communist Manifesto as a Farsi comic book. But within a year, Ayatollah Khomeini began shutting down universities. Jafar, then working at Sharif University in Tehran, co-wrote an open letter with 14 colleagues denouncing the closures. The signatories were blacklisted; those who could be found were imprisoned or hanged, Jafar said. He went underground, and eventually paid $50,000 — his life savings — for smugglers to convey him and his family out of the country on horseback. When one smuggler in the chain of handoffs didn’t receive full payment, the man abandoned Nima, his parents and his baby sister in the mountains between Iran and Turkey.

A week into a journey that was supposed to take two days, 10-year-old Nima developed a 107-degree fever and was too weak to walk. Jafar left his wife and children huddled in a valley and ran for help. Three hours later, he came across a group of nomadic Kurds, and among them, a leader of the Kurdish opposition to Khomeini. A swashbuckling hero in Nima’s memory, the man sent horses to rescue the family. The boy, close to dying, sat slumped on the back of his mother’s horse as they were led out of Iran under the cover of nightfall. “He was in very bad shape,” Alasti said. To energize him, she directed his attention to the bright ribbon of stars sweeping across the sky — the Milky Way galaxy — and promised that when they made it to safety, he could get a telescope. “That kept him very, very engaged,” she said, “to the point that it managed to keep him alive.” Once safely across the border, the family made their way to Toronto.

 

A distant shot of a man seated in a lawn chair in the dark.
Béatrice de Géa. (Originally published in Quanta. Reprinted with permission from Quanta.)

 

Life was good in Canada; only one thing was jarring. At that time, “there was a ceiling to the level of bigness and ambition with which people thought about things,” Arkani-Hamed said. He was particularly struck by how proud many Canadians were of having built the robot arms of NASA’s space shuttles. During news coverage of launches, he recalled, “there would be all these close-ins on the arm, on the ‘Canada’ on the arm, and I’d be, like, the space shuttle is a bigger deal!” At school, he refused to do busywork and got mediocre grades, other than in math (which was all tests) and English (because he loved his teachers, and reading and writing), while earning the top score in all of Canada on a national physics exam. By his senior year in high school, it was clear he would become a successful theoretical physicist. “You’re going to be the next Einstein,” he and his parents recall his physics teacher teasing, “and I’ll be that guy who gave you a B!”This is cleverly self-referential. Through this story, the physics teacher has been proved right: He is known only as the guy who gave the prodigy a B.

Homework no longer mattered at the University of Toronto; he aced his first physics test, and by his senior year he was helping to teach quantum field theory to graduate students. People were drawn to his contagious enthusiasm for mathematics and physics. “Most people get used to the idea that it’s really hard to understand stuff and we should mostly give up. He just hasn’t done that,” said Hugh Thomas, a friend and classmate who is now a mathematician. “Part of it is he’s really, really, really, really smart, so he has a shot at understanding a lot of stuff.”

The Highest Energies

Arkani-Hamed’s campaign for a 100-TeV collider began on July 30, 2013, at a panel discussion about the future of American particle physics in Minneapolis, Minn. With only five minutes to address an audience of 1,000 physicists, and a habit of speaking for as long as he pleased, Arkani-Hamed carefully prepared his words beforehand. “We all know that we’re embarking on, really, an unprecedented era in fundamental physics,” he began. After raising the naturalness predicament, he went on: “The stakes are higher than the past. We aren’t asking about this or that particle, but something much more deeply structural about physical reality. … By far the best way to settle this question is to lead a charge to the highest possible energies and build a 100-TeV collider.”

“I sat next to him and watched him read word for word what he had written,” said Kyle Cranmer of New York University, a fellow panelist who said he felt like “a little kid sharing the stage that day. … Nima’s talk breathed life into those that deep down feel that we need a bigger collider to make real progress. … It wasn’t making a case about practicality, it was a bold call to action, a moonshot, and he basically called out those that didn’t see it that way as cowards and those that did as having courage.”

 

A man standing at a blackboard, caught in thought with his hand to his cheek, as two other men face him.
Arkani-Hamed with Pinner (left) and D’Agnolo. Béatrice de Géa. (Originally published in Quanta. Reprinted with permission from Quanta.)

 

His battle cry electrified the audience and dominated the rest of the discussion, but it didn’t go over well with most of Arkani-Hamed’s fellow panelists. One suggested that he was “dreaming.” Many favored the construction of a smaller-scale neutrino experiment at Fermilab in Illinois as the next big U.S. project — a plan that was included in the particle physics community’s policy-shaping report the following May. Arkani-Hamed strongly disagrees with this plan. Neutrino physics is “perfectly interesting,” he said recently, “but it shouldn’t be the flagship of a great country.”Left unsaid here is that, as discussed below, neutrino physics put China on the scientific map; so the “flagship” comment is directed as much at China as at the U.S. For the purposes of this story, a hat tip is probably enough, but the geopolitical angle might be fodder for a follow-up story. He diagnoses American physicists as suffering from “SSC post-traumatic stress disorder,” an inability to recover from the disastrous cancellation of the Superconducting Super Collider, which was to have been three times the size of the LHC, partway through its construction in Texas in 1993. Not only did jettisoning the SSC waste billions of dollars, screw up young people’s careers and permanently damage relationships with foreign institutions, he said, it also “has had a stultifying impact on the way the field thinks about itself, and the way it presents itself to the government, to the general public.” In the U.S., as Sundrum put it, an idea like a $10 billion, 100-TeV collider is “dead on arrival.”

Arkani-Hamed soon heard from Tao Han, who holds posts at both the University of Pittsburgh and Tsinghua University in Beijing. Han has been agitating for the construction of a higher-energy particle collider in China for 10 years, until recently without success, he said. Despite China’s reputation for excellence in science education, it lags far behind the U.S. and Europe in basic research. For decades, the country’s best particle physicists have emigrated to the U.S. and Europe, rather than cultivate a tradition there.

This began to change with the successful construction of the Beijing Electron-Positron Collider II (BEPCII), a 240-meter ring completed in 2008. Han sensed an even bigger sea change in 2012, when China pulled off a major neutrino experiment at Daya Bay, off the South China Sea. The results, published that April, completed the picture of how the elusive, lightweight particles are able to shape-shift from one type to another, a phenomenon known as “neutrino oscillations.” Western scientists saw Daya Bay as arguably the most important particle physics result ever to come out of China.

The driving force behind both BEPCII and Daya Bay was Yifang Wang, a go-getting physicist in Beijing who spent his early career in Europe and the U.S. In 2011, partly on the strength of the experiments’ success, Wang was named director of the Institute of High Energy Physics (IHEP) in Beijing. He immediately pushed for an even bigger experiment in China. Because building machines is expensive and time-consuming, Wang and his colleagues decided to let theory lead the way. Two years ago, they agreed to set up a theory center at IHEP. It would need a founding director, and Han said he knew just the person.

After a series of meetings between Arkani-Hamed, Wang and others in Beijing, the Center for Future High Energy Physics at IHEP was launched at a ribbon-cutting ceremony in December 2013, with Arkani-Hamed as director.Normally a series of bureaucratic meetings wouldn’t count as compelling story. But how cool it is to see a major project at its inception, as though we were watching the pope lay the cornerstone of Notre-Dame. “I called 40 of my closest collider-physics friends,” he said, and brought them to Princeton to schedule their visits to his center in China. There, they have been collaborating with the Chinese to work out the physics case for building the new supercollider. The machine would start out as a “Higgs factory,” colliding particles at lower energies to generate particles called Higgs bosons and scour their properties for indirect signs of new physics, then ramp up to between 70 and 100 TeV (depending on the available magnet technology) by 2042. Their studies have resulted in 50 research papers and a comprehensive report detailing how the experiment will work. Meanwhile, Arkani-Hamed and Gross, a theorist at the University of California, Santa Barbara, persuaded nine more of the world’s highest-profile physicists to cosign a letter recommending the project. One of them, Yau, a mathematician and string theorist at Harvard who is famous in China, personally delivered the letter to China’s vice president, Li Yuanchao. According to Yau, the list of famous signatures caught the vice president’s attention; at his request, Yau said, the science and technology minister has held a series of meetings to discuss the feasibility of the project. (Yau’s book, From the Great Wall to the Great Collider, co-authored with Steve Nadis, will appear this fall.)

Significant challenges remain. Even with substantial help from the international community, experts estimate that several thousand new Chinese particle physicists must be trained over the next 10 years.It’s interesting how the article emphasizes manpower as the limiting factor, even more than money or technology. That’s a different perspective than we usually get. Interest in particle physics already appears to be rising among graduate-school applicants there, and Arkani-Hamed is characteristically optimistic, but some researchers worry that the rate of increase won’t be enough. Furthermore, the magnets required to accelerate protons to 100 TeV are fabricated at Fermilab, a U.S. government lab, and at this point they are still prohibitively expensive; the countries must cooperate, and the magnet cost must go down considerably over the next decade to keep the project within budget.

More troublingly, some researchers suspect that the Great Collider won’t provide the kind of definitive answer to the naturalness question that Arkani-Hamed is touting.As I mentioned above, I think this controversy doesn’t get as much weighting as it should. It suggests a stronger case against the collider than the article has admitted so far. The problem isn’t so much the amount of space devoted to the counterargument, but that the article has led the reader to expect a trifling response to Arkani-Hamed’s plans. Cranmer, for one, has doubts. “I am very sympathetic to the idea that this is a critical point in the field and that naturalness/fine-tuning is a deep issue,” he wrote in an email. “However, I’m not convinced that if we built a 100-TeV collider and saw nothing that it would be conclusive evidence that nature is fine-tuned.” There would remain the nagging possibility that a natural completion of the Standard Model exists that a collider simply can’t access. (Arkani-Hamed and collaborators proposed one such scenario this summer, dubbed “Nnaturalness,” which is testable in other ways.) Adam Falkowski, a particle physicist in Paris who blogs about developments in the field, argues that if no new particles are found at 100 TeV, this will leave physicists exactly where they are now in their search for a more complete theory of nature — clueless. “There is currently no indication that this collider will help us solve any of the puzzles in particle physics or cosmology,” he said.

The most prominent opponent of the collider project is the Nobel laureate C.N. Yang, a well-known, 93-year-old physicist whose work has significantly impacted particle physics, but who considers condensed matter physics (which concerns the behavior of materials) much more beneficial to society. Yang’s views do not appear publicly in writing, but Han described them as publicly known and an obstacle to the campaign.

Many particle physicists want a next-generation collider because it would guarantee thousands of jobs and a future for the field. And Gross, who considers naturalness a murky concept, simply wants a last-ditch search for new physics. “We need more hints from nature,” he said. “She’s got to tell us where to go.”

According to Han, the deliberation process in China is opaque, but he has heard encouraging news trickling down, and Chinese particle physicists are proceeding with their planning.

If China backs out, Arkani-Hamed will throw his full weight behind a parallel (if slower-paced) collider campaign at Europe’s CERN laboratory, which houses the LHC. Michelangelo Mangano, a particle theorist at CERN who is involved in assessing the options there, suggested that both projects might get off the ground. “If China goes ahead with their primary goal of the [Higgs factory], a possible scenario is one in which CERN points directly to the 100 TeV collider, and China uses their experience with their first project to then move on to something even more ambitious than 100 TeV.”

Or there might be no next-generation collider. “This hit me really hard at a certain point,” said Joe Incandela, a leading particle physicist at the LHC who supports both the European and the Chinese collider campaigns. Once the world stops building colliders, he said, the partnerships and collective expertise needed to do so will vanish within a generation. “The results that we have are going to have to stand for millennia, perhaps. … And boy, to stop and leave those questions open — you can see the responsibility that we feel. Nima feels this responsibility. We all feel like this can’t be the end. We’ve got to at least take it one more step.”

 

A man's arm reaching into the image frame from the right as he touches the surface of a wall with one finger.
Béatrice de Géa. (Originally published in Quanta. Reprinted with permission from Quanta.)

Beyond Space and Time

Whether a 100-TeV collider materializes or not, Arkani-Hamed’s legacy may rest on a different and potentially more important campaign. Even as he chases the question of whether the properties of the universe are natural, he is also seeking to discover what gives rise to space and time in the first place.This work on emergent spacetime is arguably Arkani-Hamed’s most important scientific contribution. It does feel orphaned here, though, not having been foreshadowed earlier in the piece. This is a comment more on the difficulty of writing this profile than on the specific choices that Wolchover made. There was so much material competing for attention, and something had to be demoted. One approach might have been to introduce emergent spacetime not as a brand-new idea, but as a long closing anecdote about how Arkani-Hamed confronts the most difficult questions in science with enthusiasm—basically, to turn the napkin vignette into a longer story. As radical as it sounds, many physicists now think that the spatiotemporal dimensions we seem to move around in are not fundamental, but rather emerge from a deeper, truer description of reality. And in 2013, an unexpected discovery by Arkani-Hamed and his student Jaroslav Trnkaoffered a possible clue to what the underlying laws of nature might look like.

They uncovered a multifaceted geometric object whose volume encodes the outcomes of particle collisions — beastly numbers to calculate with traditional methods. The discovery suggested that the usual picture of particles interacting in space and time is obscuring something far simpler: the timeless logic of intersecting lines and planes. Although the “amplituhedron” (as Arkani-Hamed and Trnka dubbed their object) initially described a simplified version of particle physics, researchers are now working to extend its geometry to describe more realistic particle interactions and forces, including gravity. “It looks like we are going to be able to go very far,” said Zvi Bern, a leader in this research discipline at the University of California, Los Angeles. Arkani-Hamed’s own research is proceeding apace, and he freely speculates about where it will lead.

He believes that the interchangeability of points and lines in the geometry of the amplituhedron may be the origin of a mysterious mathematical duality between particles and strings, the basic building blocks of nature in string theory. And particle interactions are just “the baby version of the problem,” he said. His ultimate goal is to describe the entire cosmological history of the universe as a mathematical object. In unpublished work, he has begun finding patterns in cosmological correlations — the likelihood, for instance, that if two red stars lie 20 kiloparsecs apart, a blue star lies 50 kiloparsecs away from them both. These statistical patterns encode the history of the cosmos, like dinosaur bones buried in the sand. And as with particle collisions, he has found that these patterns can be represented as geometric volumes. Ultimately, he said, anywhere from 10 to 500 years from now, the amplituhedron and these cosmological patterns will merge and become part of a single, spectacular mathematical structure that describes the entire past, present and future of everything “in some timeless, autonomous way.”

 

Nima Arkani-Hamed makes his “big-picture” case for building a 100-TeV particle collider. Video by Béatrice de Géa. Originally published in Quanta. Republished with permission from Quanta.

 

At a recent dinner, joined by a small coterie of postdocs, Arkani-Hamed drew a pentagram on a napkin.This is a nice connection to the lede. The article returns to an intimate portrayal of Arkani-Hamed, his enthusiasm and brilliance, with all the meetings and budgetary matters pushed out of the frame. The pentagram, like the amplituhedron, is defined by a finite set of lines crossing at a finite number of points. Arkani-Hamed darkened nine points in the configuration and explained that the first eight of these dots can be placed on a grid. But no matter how fine the grid, the ninth dot always falls between grid points; it is forced to correspond to an irrational number. There is a mathematical proof, Arkani-Hamed observed, that all algebraic numbers can be derived from configurations of a finite whole number of intersecting points and lines. And with that, he expressed a final conjecture, at the end of a long, cerebral day, before everyone else went home to bed and Arkani-Hamed headed to the airport: Everything — irrational numbers, along with particle interactions and the correlations between stars — ultimately arises from possible combinatorial arrangements of whole numbers: 1, 2, 3 and so on. They exist, he said, and so must everything else.

Arkani-Hamed considers his tendency to speculate a personal weakness. “This is not false modesty, it’s really a personal weakness, but it’s true, so there’s nothing I can do about it,” he said. “It’s important for me while I’m working on something to be very ideological about it. And then, of course, it’s also important after you are done to forget the ideology and move on to another one.” Thinking of the naturalness question, and his quest for a mathematical theory of nature, he continued, “But certainly in things where progress isn’t so immediate, I find it very important to convince myself that it’s the one true path. Or at least a true path.”It’s really cool how the piece ends with an expression of self-doubt. It leaves you with a sense of Arkani-Hamed as a three-dimensional human. Or is it “ten-dimensional”?

 

(Editors’ note: See CASW Showcase’s earlier interview with Natalie Wolchover here. George Musser interviews her about this story below.)

 


A Conversation with Natalie Wolchover

 

George Musser: Let’s start at the beginning. How did you conceive of this profile?

Natalie Wolchover: I had done a story on the amplituhedron, this work from 2013. I had been wanting to follow up on that work in some way. There was also this push to build a collider in China that people were talking about a lot, and he’s also at the center of that story. So, I was like, Oh, I’ll just write a profile of Nima, who talks about all these things. Then it just grew and grew, because each aspect of the story—his life, the collider, the amplituhedron—all were so complicated themselves. I had never done many profiles before. I did a profile of a Fields Medal winner in 2014, but that was tied to this win, so it was fairly straightforward, whereas I’d never done a profile when there isn’t a clear news peg. So, it was a real challenge, and I probably way overreported it, and wrote it a couple of times before figuring out how to pull it off.

GM: Overreporting—do you think it’s endemic to this field of writing?

NW: Probably so. Calling it overreporting is not quite right, because you do have to do so much reporting before you have enough valuable tidbits to pick out. When I’m writing a story where it’s really clear what the news peg is, or why it’s important, then it can just happen pretty straightforwardly. I talk to the people I need to talk to; I get the outside quotes; it all comes together. But when you’re trying to find a story where it’s unclear at the beginning what the story is, and maybe no one’s ever told it before and it’s really not clear how the parts fit together, or which parts are important, then you end up getting hours and hours of material and thousands of words beyond what you need.

GM: Had you done prereporting before pitching it?

NW: No, I just pitched doing a profile to my editor, and he was familiar enough with Nima’s work and his importance in physics that he was totally onboard with that. In general, my editor, Thomas Lin, and I have a good enough relationship that there’s not many times where I pitch something and he rejects it. He trusts me if I think something’s a good idea. I often will pitch something where I don’t know exactly what it’s going to look like, but I feel there’s something here that I should pursue.

GM: Where do you think this sense is coming from?

NW: I think that it’s grounded in always going after subjects that are addressing the big questions and possibly going to lead to greater fundamental understanding of the universe or life. I think it’s a sense that something which sounds complicated on the face of it, or sounds like a pretty technical advance in an obscure field, ties into some very fundamental, important question.

GM: How much of that early research is based on phone calls, face-to-face interviews, and reading the literature?

NW: I do read a lot of the academic papers to start out with. Paying a lot of attention to the references and seeing what other recent work it is based on; reading papers backwards through time; trying to get a sense of the story or the development of the line of research; and then contacting, maybe, the authors of the previous papers as well as of the new paper to get a sense of the arc. I think in interviews it’s important to have enough knowledge to formulate some good questions to clue the researchers in to the fact that you actually kind of understand what they’re trying to do. I spend a long time composing my email to a researcher who I’ve never interviewed before, because you do want to convey to them that you’ve put thought into your choice of them as a person to talk to.

GM: Do you feel they wouldn’t be so willing to talk if you hadn’t done that preparatory work?

NW: I think so. I do feel that sources need to get a sense they’re not just replaceable. Oftentimes, I’ll send an email out asking for comment on something, and then maybe two days later I’ll write again and say I’m just following up on my earlier email—then they’ll immediately write back and say, yes, I can talk Wednesday. If you didn’t get them the first time, then on the second email they’ll be like, OK, they’re serious.

GM: The value of a face-to-face interview versus Skype or FaceTime—what do you see as the relative merits?

NW: To be honest, I don’t feel that interviewing in person is that important. For me, just technically it’s a lot easier to be sitting at my computer with my recording equipment and just typing and not be distracted by interpersonal dynamics. But I definitely think it’s important to go out into the real world to find stories. The value is not just so you can sit across from someone and nod as they’re talking, but in the story-finding process.

When the personality or environment of the researcher is important to the story, then I would want to meet them in person and get a sense of just them in their natural environment, how they interact with people, et cetera. With the Nima profile, I spent two full days with him and then talked to him a lot on the phone after all, and I probably met him three or four times before that at various conferences or the IAS. I think he was a bit apprehensive when he realized that it was going to be a profile that included a lot of personal information, rather than just discussing his work, but he decided to go along with it.

GM: In what way did his discomfort manifest?

NW: I don’t think he ever really said anything, but in the course of our discussions, when I would ask him something on either his past or how he feels about something, I could just see that he was registering that. Over the course of the day, especially that first day, I think he got more comfortable with the fact that I was delving pretty deeply into his past, so we had to go over the same ground in more depth.

GM: Physics is hard to write about. Do you find that to be the case, too? And what specifically is hard?

NW: I do think physics is hard to write about. The main reason is the huge gulf between what the average person knows and the forefront of the field, where the exciting stuff is happening. To figure how to quickly bring a reader up to speed, so that you can then explain why something new is happening, why they should care, is difficult. I remember someone describing writing a story as a Jenga tower. You pull out everything you don’t need, leaving the bare minimum that is required to keep the tower up. Figuring out what those pieces are is hard. You have to use familiar language and convey details in passing, so that it doesn’t feel that you’re giving them information, but actually you are. It’s expressing physical ideas with economy that’s the challenge.

When I go back and read stories that I wrote two years ago, sometimes they feel extremely packed with information. Were I able to edit that story now, I would take out some pieces or simplify. It’s always so hard when you’re writing a story. When you’ve just been doing all this reporting, you have so much information at your fingertips, and it’s all so familiar that it’s really hard to pare it down.

GM: What’s an example of getting ideas across unobtrusively?

NW: In a recent story about black holes and analogue black holes, there’s a part where I’m trying to explain very briefly that this idea of black holes bending spacetime is connected with Einstein’s theory of general relativity, but without starting the sentence as, “According to Einstein’s theory of general relativity.” You want to stick with what the reader considers to be the most relevant thing, which is black holes, and then slip in, “the fabric of space and time becomes increasingly curved—equivalent to strengthening gravity, according to Einstein’s general theory of relativity.” I’m trying to figure out how to get information across where people don’t feel they’re having to learn information that they have to remember for later.

GM: Even for the Quanta audience?

NW: There’s no one alive who wants to be inundated with complex, challenging information that’s hard to piece together. A lot of scientists read Quanta, and they like reading about work from one field away from their field. But even one field away, they don’t have familiarity with the concepts and they pretty much need it to be aimed at a lay audience, as streamlined as possible.

We’re really lucky at Quanta that we can put a lot of time into the stories we cover and cover them in a way that the subject is accessible, but also pretty high-level, and we’ve attracted readers who really appreciate that.

GM: What about your own process of understanding? How much of that is part of the challenge of the subject?

NW: It depends. Sometimes, I’m really frustrated with myself because I’ve learned something before and I don’t remember it, or there are certain areas I never feel that I’ve grasped. One area like that is phase transitions and critical phenomena and the renormalization group. I think the common thread with those subjects is that to really understand means understanding the equations, and I’m not engaging at that level. Sometimes I do try to figure out what’s happening in the equations and then that does help.

GM: Do you feel you have a deeper understanding of the things that you studied in your own education?

NW: I don’t really write about that area very much—it was nonlinear optics. Certainly having been to grad school and having been involved in research has helped tremendously with what I do. Understanding what physics is and how it works, what the goal is, and the basic outline of how the different areas fit together, has helped. I feel like it would be very hard to be a physics writer who hadn’t ever done physics.

I had this funny attitude, probably from working in the nonlinear optics lab, that real-world applications of physics were way more important than cosmological questions and more important than particle physics and Higgs bosons. Now I’ve left applied physics behind, barely even cover it.

GM: Are profiles more demanding for the writer than a straightforward story? If you had just done something on the Great Collider, would that have been easier?

NW: It definitely would have been easier. The reason that you’re choosing to write about someone competes with the biographic aspect. Jumping back and forth and making it seem natural is a real challenge for me. I really struggled with the profile of Nima. When you’re weaving together the story of someone’s life with whatever the relevant aspect of their life is, whatever the news is, that’s just extremely difficult to do, and it takes a lot of time.

I think the biggest struggle was that the amplituhedron/emergent-spacetime thread and the collider thread—those two big pushes of his research—are pretty distinct. I was trying to figure out how to get both of those into the story, because it wouldn’t be a profile unless they were both there. It was hard to figure out whether Nima’s escape from Iran served the purpose of this profile, because, if the profile is about physics, there does have to be a reason that you’re suddenly talking about somebody’s childhood. Initially there was also going to be more about point-line duality, but ultimately almost none of that made it in.

GM: Do you find that often happens—you do a whole branch of research and it gets dropped?

NW: It happens a lot. You realize that something is fascinating to you, but it’s not serving the reader in getting them from the beginning to the end. As much as you think they might be interested as well, it’s a diversion. On the flip side, something doesn’t have to serve the arc if it’s just going to engage people more. To completely contradict what I’ve just said, I do have to remind myself that details can stay in a story just because they’re compelling or beautiful. Oftentimes that will be the thing that someone ends up commenting on or remembering—this random thing that doesn’t really need to be there.

With this earth science story I was recently working on, there’s a scene where a bunch of scientists are out taking a hike on a beach to see some geological features. They’re talking and they’re debating and rehashing issues in their field and recalling the history of their field. The scene was unnecessary, but I think it gives the reader a sense of how earth science works, how scientists have a relationship to the history of their field, how knowledge of the field can be passed down orally.

GM: At the very end of the profile, you talk about the combinatorics. That’s such a Nima thing to talk about! It’s such a big idea, capital B, capital I.

NW: It’s only something he can get away with saying. It’s so speculative. Oh, great, you thought of that—the whole universe comes from whole numbers. It’s pie-in-the-sky and yet he can give you enough concrete reason to believe it that you feel it must be true. He manages not to annoy people with how speculative he is sometimes. And he delivers. That’s the main reason.

 

Natalie Wolchover Jean Sweep

Natalie Wolchover is a senior writer at Quanta Magazine, focusing on physical sciences, and winner of the 2016 Evert Clark/Seth Payne Award for young science journalists and the 2016 Excellence in Statistical Reporting Award. Previously, she worked at Popular Science and LiveScience. She majored in physics at Tufts University and studied graduate-level physics at the University of California, Berkeley. Follow her on Twitter @nattyover.

 

 

 

 

 

George Musser Adrianne Mathiowetz

George Musser is a contributing editor at Scientific American and Nautilus magazines and the author of Spooky Action at a Distance (which also includes a profile of Arkani-Hamed and his work) and The Complete Idiot’s Guide to String Theory. He is the recipient of the 2011 American Institute of Physics Science Writing Award and the 2010 American Astronomical Society’s Jonathan Eberhart Planetary Sciences Journalism Award, and as a staff editor at Scientific American magazine for 14 years, he shared in two National Magazine Awards. Follow him on Twitter @gmusser.

 

 

 

Skip to content